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Abstract 

The recently introduced approach of using the difference 
between isomorphous structure factors as a random 
variable in the derivation of joint probability distributions 
of isomorphous structure factors has been extended to 
secure the conditional joint probability distribution of the 
quartet phase sums present among isomorphous structure 
factors. It is shown for calculated data sets (native and 
heavy-atom derivative) of the proteins avian pancreatic 
polypeptide and cytochrome c that, with single-wave- 
length anomalous-scattering data, reliable estimates can 
be obtained for the quartet phase sums, even if the 
estimates are based on the structure-factor differences of 
the four quartet main-term reflections only. 

1. Introduction 

The crystal structure of relatively small molecules is 
readily determined from the diffraction intensities by 
means of direct methods (Schenk, 1991). Direct methods 
have been less successful in solving macromolecular 
structures but in the last decade it was acknowledged 
than an efficient direct-methods solution of macromole- 
cular structures should allow the simultaneous utilization 
of various sources of phasing information. This led to the 
development of expressions based on the joint prob- 
ability distribution of isomorphously related structure 
factors (Hauptman, 1982a,b; Giacovazzo, 1983; 
Giacovazzo, Cascarano & Zheng, 1988; Fortier & 
Nigam, 1989; Peschar & Schenk, 1991). The test results 
were encouraging, though not unexpected, since more 
data were involved (Hauptman, Potter & Weeks, 1982; 
Hauptman, 1982b; Giacovazzo, 1983; Furey, 
Chandrasekhar, Dyda & Sax, 1990). The probabilistic 
approach leading to these expressions relies on using 
individual random variables for heavily correlated 
(normalized) structure factors, e.g. F n and F_ H, in the 
presence of a few anomalous scatterers. Since both 
individual structure factors are a function of all N atoms 
and because of their heavy correlation, the final 
probabilistic quantities turn out to be complicated 
functions of the scattering factors of all N atoms [see, 
for example, the definition of functions (3.20)-(3.37) in 
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Hauptman (1982b) and the functions in §3 of Giacovazzo 
(1983)]. Recently, a different approach was taken by 
Kyriakidis, Peschar & Schenk (1993c) by exploiting the 
difference structure factor F~ a of two isomorphous 
structure factors Ft~ and F m as a random variable: 

F ff = Fry - F m 

N 
= ~--~fjt exp[27riH~, rj] 

j=l 

N 
_ ~--]fjm exp[2rriI-l~-r j] 

j=l 

N 
= ~--~t v -fjm)exp[2zriH~. rj] 

j=l 

= IFdl exp(@d). (1) 

The subscript v refers to a particular reflection, the 
superscripts 1 and m refer to two individual isomorphous 
structure factors while d denotes a dependence on the 
difference between the isomorphous structure factors 
only. The atomic scattering factors include anomalous- 
dispersion corrections, 

j [_  ! • l !  
fj ,  -- f j (H, )  "-" f jOv f j + i f  j 

r = f  + if)' 
= Lfj~I exp(itj~). (2) 

Both the magnitude IEffl and the phase q~ of F~ a are 
functions of the magnitudes and phases of Ft~ and Fm. 
From (1), it follows that 

lEgal z --[Ft~l 2 + IFml z - 2lFZ~llFml c o s ( ~ )  (3) 

with the doublet phase sum 
d m 

sa = [ - 1  if H t = H m (4) 

l +1 if H t = - H  m. 

Various combinations of two isomorphously related 
structure factors can be defined, e.g. F H and F*__ n 

(* means complex conjugation) if a few anomalous 
scatterers are present. F~ a is defined in such a way that 
only those (n) atoms that have an appreciably non-zero 
atomic scattering-factor difference in (1) will contribute 
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to the final probabilistic expression. With F~ a as a random 
variable, in effect a reduction of N to n is achieved, 
which is expected to improve the quality of the estimates 
since, in the case of normal diffraction data (non- 
isomorphous and no anomalous scattering), the reliability 
of the triplet and quartet phase-sum estimates is a 
function of N -(1/2) and N -l ,  respectively. An additional 
advantage of the difference-structure-factor approach is 
that the mathematical calculations are simplified. It has 
been shown for calculated structure-factor data that, by 
taking the F~ a as a random variable, reliable estimates of 
the triplet phase sums present among isomorphous data 
sets can be obtained, even if the diffraction ratio is small 
(Kyriakidis, Peschar & Schenk, 1993a). An additional 
improvement is achieved by supplementing the estima- 
tion of the doublet phase sums with vectors from a 
difference Patterson synthesis (Kyriakidis, Peschar & 
Schenk, 1993b,c). 

In the current paper, the difference-structure-factor 
approach is extended in order to obtain estimates of 
quartet phase sums present amongst isomorphous 
structure factors. These quartets are expected to be 
important for the application of direct methods in 
macromolecular crystallography (Sheldrick, 1993). 

2. The quartet phase sum in direct methods 

The three-dimensional quartet phase-sum relation 

1~1234 -- q91 "-~ q92 "~ q93 + q94 (5) 
with the subscripts 1 to 4 referring to four reflections H1, 
H z, H 3 and H 4 = - H  1 - H 2 - H3, whose indices add to 
0, was introduced by Hauptman & Karle (1953) as being 
potentially more appropriate in solving three-dimen- 
sional structures than the two-dimensional triplet phase 
sum 

~,z3 = ~0, + ~o 2 + q93, (6) 
in which the subscripts 1 to 3 refer to three reflections 
H l, H 2 and H 3 ---- - H  1 - H2, whose indices add up to 0. 
Some years later, Simerska (1956) derived the quartet 
relationship from a generalization of the Sayre-Hughes 
equation for products of three reflections instead of two. 
Both Hauptman & Karle and Simerska showed that (5) 
lies more probably near zero for larger values of 

gq = Iglg2g3g4]N -1. (7) 

The triplet relationship (6) is expected to be estimated 
more reliably because the E 1 values, 

E l --IEaE2E3I N-I/2, (8) 

which determine the reliability of the triplet estimation, 
are in general larger than the Eq values, which depend on 
N -a only. Therefore, quartets were not used for practical 
purposes until Schenk (1973a) showed that quartets can 
also be formed by summing two triplets with one phase 
in common. In this way, quartet (5) depends not only on 
IEtl, IE21, IE31 and lEa1 but also on the so-called cross 

terms IEsI (//5 = H, + H2), ]E61 (n  6 = H, +/ /3 )  and 
IE71 ( H  7 - - H  2 + H3).  It was shown that quartets with 
large cross-term magnitudes most probably lie near 0, 
while quartets with small cross-term magnitudes are 
expected to lie near Jr (Schenk, 1973a,b; Schenk & De 
Jong, 1973; Schenk, 1974; Hauptman, 1974). This new 
point of view led to the development of improved joint 
probability distributions for estimating the quartet phase 
sum (Hauptman, 1975a,b, 1976; Giacovazzo, 1975; 
Giacovazzo, 1976a,b) and later on to the formulation 
of the neighbourhood principle (Hauptman, 1975b) and 
the representation theory (Giacovazzo, 1977b). The latter 
theories identify those structure factors upon which the 
phase sum of a structure (sem)invariant most sensitively 
depends. In practice, the approaches of Hauptman and 
Giacovazzo are closely related and often lead to the same 
results in spite of different starting points (Heinerman, 
1977; Giacovazzo, 1977a). As an alternative to the 
closed exponential expressions of order N -l ,  Peschar 
(1987) investigated the incorporation of higher-order 
terms in the series-expansion form of the joint probability 
distribution. A comparison with the results of Hauptman 
and Giacovazzo showed that the estimation based on the 
series expansion lies systematically in between those of 
the distributions of Hauptman and Giacovazzo which 
underestimate and overestimate, respectively, the quar- 
tets to be 0 or Jr. 

In direct-method routines, quartets have been applied 
in particular to starting-set procedures and figures of 
merit (Schenk, 1973a; Schenk & De Jong, 1973; Schenk, 
1974; De Titta, Edmonds, Langs & Hauptman, 1975; 
Gilmore, 1977; van der Putten & Schenk, 1979; Freer & 
Gilmore, 1980; Cascarano, Giacovazzo & Viterbo, 
1987). More recently, Sheldrick (1993) used quartets to- 
gether with triplets to solve some small macromolecules. 

2.1. The joint probability distribution and the condi- 
tional probability distribution of the quartet phase sum in 
the presence of anomalous scattering 

2.1.1. Four structure factors. As indicated above, the 
probability distribution of the quartet phase sum invol- 
ving the structure factors of the four main-term 
reflections only (H1,//2, H 3 and H 4 = - H  1 - H  2 -/-/3) 
has not been used extensively because it was clearly 
inferior to the seven-structure-factor expressions. How- 
ever, as will be discussed later in this paper, the four- 
structure-factor expression is an important starting point 
to obtain a conditional joint probability expression of the 
quartet phase sum present among two isomorphous data 
sets. Let us denote by R i and 4 i the random variables for 
the structure-factor magnitude IFil and phase ¢Pi, 
respectively. If, in the structure-factor expressions, 
complex-valued atomic scattering factors are allowed 
for, the joint probability expression of the magnitudes R 1 , 
R2, R 3 and R 4 and the phases 41, 42, 43 and ¢~4 of the 
four quartet main-term structure factors can be expressed 
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as 

P ( 4  1 . . . . .  4 4, RI . . . . .  R4) 

exp[2W1234 cos( t~  1 + t~ 2 --}- t;~ 3 --1- t~ 4 + A1234)], (9) 

W1234 = R1R2R3R 41Z12341, 

which involves the following definitions: 

N 
z~ = ~ Ifavl 2 

j=l 
(10) 

Z1234 = 1Z12341 exp[iA1234] 

= (ZIZ2Z3Z4) -1 ~-']~(fjlfj2fj3fj4)*, (11) 
j=l 

with * being the complex conjugation and the atomic 
scattering factors are as defined in (2). With the random 
variable for the quartet phase sum ~1234 defined to be 
!/-/5234, 

I//1234 --  41 "21- (P2 "lt- t~3 .qt_ t~4 ' (12) 

the conditional probability distribution of ~/1234 given R 1 , 
R2, R 3 and R 4 c a n  be expressed as 

P(t/'/1234 R 1 , R2, R 3 , R4) 

= L41 exp[2W1234 COS(t/'/1234 -'{- A1234)] (13) 

with L 4 a normalization constant. From (13), an 
expectation value for I/-/1234 is readily obtained as 

(exp[i~1234]) -- Br(2W1234 ) exp[--iA1234] (14) 

with Br(x) the ratio Ii(x)/Io(x ) of the modified Bessel 
functions 11 and I o. The distribution of I//1234 is centred 
around --A1234 and Br(2W1234 ) acts as a statistical 
weight. 

2.1.2. Seven-structure-factor expression. The joint 
probability distribution of the four main-term and three 
cross-term structure factors (e.g. Hauptman, 1975a, 
1976) is readily generalized if the atomic scattering 
factors are complex valued, 

P(RI . . . . .  R7, (~1 . . . . .  cP7) 

exp[2W12 5 COS(4 1 -+- 4 2 

-+- 2W345 COS(4 3 -}- 4 4 q- 

-Jr- 2W136 COS(4 1 -{- t~ 3 -- 

-'1"- 2W246 c 0 s ( 4  2 -Jr- t~ 4 -3 l- 

Jr- 2W237 c0s(4 2 -Jr- 4 3 - 

q- 2W147 COS(t~ 1 --~ t~ 4 -31- 

+ 2W1- 7 cos((J~ 1 -11- 4 2 --{- 

with 

- 4 5 + A125) 

t~ 5 -Jr- A345) 

4 6 -3 t- A 136) 

4 6 --{- A 246) 

4 7 + A237) 

4 7 + A14 7) 

4 3 -11- 4 4 "3 I- Al_7) ] (15) 

W,,ac = RaRbR~lZab~l, (16) 

N 
Z~bc : IZabcl exp[iA,,bc] = (ZaZbZc) -1 E(fjaJ~jbfjc)*, (17) 

j=l 

WI-7 exp(iA1-7) = R~R2R3R4Z>7 (18) 

and 

Zl_ 7 = [Z1_71 exp(iA1-7) 

: Z1234 -- Z125Z345 - Z136Z246 - Zln7Z237 . (19) 

In the case of absent cross terms Rs, R 6 and/or R7, the W 
and Z terms containing these quantities should be omitted 
from (15) and (19). It should be noted that only terms 
have been included in (15) that are of importance for the 
subsequent calculations of the conditional joint prob- 
ability distribution of the quartet phase sum (12). 

3. A conditional joint probability of the quartet phase 
s u m  

The conditional joint probability distribution of the 
quartet phase sum given the seven structure-factor 
magnitudes R 1 . . . . .  R 7 is often arrived at by integrating 
over the random variables for the cross-term phases in 
the joint probability distribution of the structure factors 
(Hauptman, 1975b). When applied to (15), this approach 
leads to 

P(~I234]R1,... ,R7) 

(3( exp[2Wl_  7 c0s(t//1234 --[- Al_7)]Io(2Z5)lo(2Z6)Io(2Z7) 

(20) 

with Z 5, Z 6 and Z 7 as follows: 
2 2 

Z~ : W 1 2 5  --}- W245 + 2Wlz5W345 c0s(~1234 + A125 + A345) 
2 2 

Z~ --- W136 -31- W246 "JI- 2W136W246 c0s(I/-/1234 Jr- A136 -']- A246) 
2 2 

Z4 =W147 --]- W237 --}- 2Wln7W237 cos(~//1234 --1- A147 + A237). 

(21) 

If one (or more) of the cross terms R 5, R 6 and R 7 is 
absent, the corresponding Bessel function I o containing 
this magnitude should be omitted. The application of (21) 
is not straightforward because a numerical integration is 
required to get an expectation value for the quartet phase 
sum. Therefore, we have chosen a different approach. 

An efficient technique to get a conditional joint 
probability distribution of an invariant phase sum starting 
from the joint probability distribution of the structure 
factors involved was introduced by Peschar (1987). In 
the case of the quartet phase sum, the procedure starts 
from (15) but instead of integrating with respect to 
the cross-term random variables 45, 4 6 and 47 , 
the expectation values (exp(i45)), (exp(i46)) and 
(exp(i47)) are calculated from the triplet terms present 
and subsequently introduced in (15) as known cross-term 
phase information. Following this approach, the 
conditional joint probability of the quartet phase sum 
becomes 

P(I/-/1234 R 1 . . . . .  R7) o¢ exp[2G1_ 7 COS(~//1234 + Al_7)], 

(22) 
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G1-7 exp[iA 1-7] --- Wl-7  exp(iA1-7) 
+ {W125Br(2W345) 

+ W345 Br(2W125) } exp[i(A 125 + A345)] 

+ {W136Br(2W246)  

+ Wz46Br(2W136)}  e x p [ i ( A 1 3 6  + A246)] 

+ {W147Br(2W237)  

+ W237Br(2W147)} e x p [ i ( A 1 4 7  + A237)]. 

3.1. The conditional probability distribution of  the 
quartet phase sums present among four  difference 
structure factors 

The joint probability theory of structure factors while 
allowing for complex-valued atomic scattering factors is 
directly applicable to the difference structure factors of 
isomorphous structure factors. Let us define Rid, R2 a, R3 a 
and R4 a to be random variables for the four magnitudes 
lEVI, IFxa I, lEVI and IFa_H_K_LI, respectively, and ~1234 to 
be the random variable of the difference-structure-factor 
quartet ~1234, 

~/1234 : ~d _.I_ ~d 21 - ~d _~ ~d. (23) 

Analogous to (9)-(14), the conditional joint probability 
distribution o f  !/~1234 Can be expressed as 

P( q~lz341Ral , ga2, R d, Ra4 ) 

CX exp[2Wd234 c 0 s ( ~ 1 2 3 4  + Ad234)], (24) 

wd234 l ~ d D d o d o  d Z d , *t 1~'21"31"4 1234 

which involves the following definitions: 
N 

d z~ = ~'~ Ifj.t~ _fj~[2 (for v = 1, 2, 3, 4) 
j=l  

(25) 

d = izd2341 exp[iAd2341 Z1234 
N 4 

d d d d - 1  
~" (Z1Z2Z3Z4) ~ H (fjlv _ f j m ) *  ( 2 6 )  

j= l  v=l 

with * denoting complex conjugation. 
Expression (24) is a function of both data sets. In order 

to arrive at an expression that is a function of variables of 
one data set only, we follow now a procedure introduced 
by Kyriakidis et al. (1993c). The product of the random 
variables Ri d, R d, R3 d, R4 d and exp[i~1234 ] in terms of the 
structure factors is 

4 
Rdoaodod exp[iq~12341 = 1"I (F~ - Fm). (27) 

v=l 

The right-hand side of (27) can be written as a sum of the 
16 contributing isomorphous quartets, 

~tm,,q = gt 1 + qg'~ + ~o~ + ~oq4 (l, m, n, q = 1 2). (28) 1234 

Each of these 16 terms is now expressed exclusively in 
one of the 16 isomorphous quartets. After replacing in 

(27) the doublet phase sums exp(iT/~) by the estimates 
(exp(iq~)), with q~ the random variable for the doublet 
phase sum, 

(exp(iq~)) = (exp[i(q~tv + sdq~m)]) = exp(i2a~) (29) 

with 

( 'F'~I2 + IFm'2 - ~ ) l , m = 1 , 2 ,  
,~d = COS-1 l m 

21F~IIF~ I 

the random variable q~ is readily expressed in ~ t  and 
~. 

For example, if all terms are expressed in the quartet 
i//1111 this leads to 1234, 

(F~ - FZ)(F 1 - FZ)(F 1 - F2)(F j - F 2) 

• 1111 1 1 1 1 1 1 1 2  exp[_i24 e] = -- IF1F2F3F4I e x p [ t  ~¢1234]{1F1 F2 F3 F4 [ 
1 1 2 1 - IF 1F2F3F4 
1 1 2 2 

+ I F 1 F 2 F 3 F 4  

1 2 1 I - IF 1F2F3F4 
1 2 1 2 

+ [ F I F 2 F 3 F 4  

1 2 2 1 + IF1 F2 F3 F4 
I 2 2 2 - IF 1F2F3F4 
2 l 1 1 - IF 1FEF3F~ 
2 l l 2 + IF1FEFaF4I 
2 I 2 1 + IFI F2F3F41 
2 1 2 2 

-- IFIF2F3F41 
2 2 1 1 + IF1F2F3Fal 
2 2 1 2 

- -  ] F I F 2 F 3 F a l  

2 2 2 1 -- IF1F2F3F41 
2 2 2 2 -- ]F1F2F3Fnl 

exp[- i2  d] 

exp[-i(23 a + 24d)] 

exp[--i2 d] 

exp[--i(2 d + 24d)] 

exp[--i(22 d + 2d)] 

exp[-i(2~ + 2~ + 241)1 

exp[-i2{] 

exp[-i(2~ a + 241)] 

exp[-i(2~ + 2~)] 

exp[-i(2~ + 2~ + 2~)] 

exp[-i(2~ + 2~)] 

exp[-i(2~ a + 2~ + 241)] 

exp[-i(2~ a + 22 a + 2~)] 

exp[- i(2 d + 2 d + 23 d + 24d)1}. (30) 

The term beween { } in (30) does not depend on the 
A l l l l  quartet ~11~ itself and can be expressed as  ,,1234 X 

exp[iAll~]. In this way, combining (27) with (30) 
gives 

d d d d exp[it~1234] A I l l l  • 1111 A l l l l y I  IRIR2R3R4[ =~ 11234 exp[/(qJ1234 -I- ~ x12341.1. 
(31) 

Finally, after (31) is combined with (24), the distribution 
1111 of I//1234 becomes 

p m A l l l o d  d d R4 a) k~r 1234 "'1 ' e 2 ,  R3 ,  

1111 1111 a l l l l  Ad234)], ( 3 2 )  exp[2G1234 COS(I//1234 + ~'1234 -~- 

G l l l l  A l l l l l T d  
1234 = ~*12341Lq2341 • 

Expressions for the other quartets in (28) can be set up in 
a similar way. 
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3.2.  The conditional probability distribution o f  the 
quartet phase sum among isomorphous data sets in the 
case o f  seven difference structure factors 

Starting from the difference-structure-factor analogue of 
(15), 

P( 4 d . . . . .  47 d , R d . . . . .  R7 a) 

0¢ expt2Wd25 cos(4  d + 4 d -- 4g + Adz5) 

-+- 2Wd45 COS(4~ + 44 d + 4 g --[- z~3d45) 

n t- 2Wld36 C0S(41 d n t- 43 d -- 46 d nt- z~1d36) 

+ 2wd46 COS(4 d + 4 d + 4 d + Ad46) 

+ 2Wfi7 COS(4g + 4~ -- 47 ~ + Ag3~) 

+ 2W(4~ cos(4g + 44 ~ + 4g + ag4~) 

--[- 2W:_7 cos (4  f + 4 d + 4 d + 44 d -+- z~ld_7)], (33) 

various conditional joint probability expressions can be 
obtained for the quartet wll~l dependent on whether the x" 1234, 
random variables R~, R~ and R7 a, denoted now simply as 

d Rcros s, of the cross-term difference structure factors are 
(assumed to be) known completely or their magnitudes 

d [ecross [ only. 
d 3.2.1. Rcros s known. As explained in §3.1, it is 

convenient to express all terms in the probabilistic 
expression in those of a single data set only. For 
example, if the triplet term 125 in (33) is expressed 
completely in quantities of data set 1 by means of (29), 
the result is 

with 

w(~, cos(4f  + 4 2 " -  4g + Af~)  

111~ (34) ---- ~'125t'~'111COS(4II + 421 --  4 ~  -1- Af25 -t- A1251, 

G i l l  d A l l l  
125 ---IZ125 "'125 

RaOaoa exp[i(4xa + 42 a _ 45a)1 1 " 2 " 5  
- -  --  a l l l ~ ]  (35) 4221 exp[i(41 + 4~ 4~ + ~*125,J. ~*!25 

The same technique applied to the quartet term in (33) 
results in 

w(_7 cos(4f  + ,,,~ + 4 ,  ~ + 4~ + zx~_7) 
llii ,  - -  /'7"1211COS(411 @ 4 1 "Jl- 4 ~  -~- 4 1 "-[- Af_ 7 -11- A22341, 

- -  ,o1_ 7 

(36) 

al211 = [Zla_7 a l l l l  
1-7 z • 1234" 

As a result, the conditional joint probability expression of 
the quartet =-123411/1111 becomes 

Of'h'2112 R f ,  R d) CX exp[2T?17 ~1 i22i COS(!ff1234 -'t" ~-21-7) ], ~kT1234 . . . ,  

(37) 

All l I '~]  "1"1111 r ' 'q l l l l - - (7*l l l l  exp[i(A~-7 + ~-1234:J ll-7 explt~Zl-71--,-,1-7 
111 112 111 I11 

+ {G125Br(2G345) + G345Br(2G125)} 
A l l l  A221yI X exp[i(Aaa5 + zx345 -Ji- Ad25 At-~*1251J 

111 112 Ill  111 
+ {GI36Br(2G246) + G246Br(2G136)} 

A211 A I I l h l  
X exp[i(Aaz46 + z'246 "[- Af36 + "*1361J 

111 212 111 111 
+ {G147Br(2G237) + G237Br(2G147)} 

A l l l  Ii13] 
x exp[ i (A~37 + ,1237 --1- Ald47 -t- A1471J. 

In the cases of single-wavelength anomalous scattering 
(SAS) and two-wavelength anomalous scattering (2DW), 
the majority of the doublet phase sums tend to be 
positive. The assumption that the doublet sign is positive 
together with the estimate for the doublet phase-sum 
magnitude (29) leads to a completely available R~ros s. For 
simplicity, it has been assumed in (33)-(37) that all three 
cross-term difference structure factors are known. For 
absent cross terms, the relevant terms in (37) should be 
omitted. 

3.2.2. Only a [Rcross] known. For SAS or 2DW data, it 
may in some instances also be useful to consider the case 
that only d [Rcross[ is available, e.g. when d Iecross[ is small. 
Taking again, as an example, the triplet 125 term in 
(33), the left-hand side of (34) can be expressed 
as 

2RalRa2R ~ exp[i(41 a + ¢ d _ ¢d)] 

with 

= (F~ - F~)(F 1 - F~)(Rd) * 

- -  21Rgl exp[i(41 + 41 - ~5:e~I2d~dhlAll exp[iAl~l (38) 

11 - 11 Al2 exp[,A12] = IF~F~l - IF21F~zl exp[-i),~ a] 

- I F ~ F f f l  exp[-i22 a] 

+ IF21F2I exp[-i(2~ a + 2za)]. (39) 

So the triplet 125 term becomes 

2wd25 COS(4 d + 4 d _ 45 a + Ala25) 

---- ~"'o 2259/'711d COS((jDll "-t- (t)l __ (jD d + Af25 .ql_ A I~5), (40) 

G11d d II 125 = ZlzsAIzlR~sl- 

Similarly, 2R3R4R 5 d  d d exp[i(4~ + 44 a + 45 a + A3445)] be- 
comes 

CZIId exp[i(4~ + 4~ + 45 a + A~ ] + A3aas)]. (41) "o345 

From (40) and (41), estimates for the cross-term phase 
random variables can be obtained: 

(exp[i45a]) lid = Br(2G125) exp[i(411 + 4~ + A ll 12 "Jr- z~f25)] 

(42) 

and 

(exp[_i45a]) = Br(2G345 )21d exp[i(4~ + 4 1  ..[.. A3411 -Jr- A d 5 ) ] ,  

respectively. Insertion of (42) in the triplet terms 345 and 
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125 in (33) gives 
• 1111 11 11 

exp[l(tJS1234 -]- A I 2  -I- Ald25 -q- A34 -+- Ad45)]  

l id  l id  l id  l ld  x {G125Br(2G345) -t- G345Br(2G125)}. (43) 

The triplet terms 136 and 246 and the triplet terms 147 
and 237 can be handled in the same way so the final 
conditional joint probability expression can be expressed 
in a form similar to (38): 

p [ , l ,  l l l l  ]i~d R d, IRdl, IRdl IR7dl) 
\ " 1 2 3 4 1 " ' 1 ,  " " " , 

cx exp[ZT~ 111 1111 COS(1ff1234 "31- ff21_7) ] 

T l l l l  • 1111 
1234 exp[/~'-21234] " -  

(44) 

G1111 exp[i(Ald_7 + A l l l l ~ ]  1-7 ~ • 123411 
l ld  l ld  l ld  l ld  

d- {G125 Br(2G345) + G345 Br(2G125)} 

x exp[i(Ad45 + Ad25 "-}- AI~ + A~4:)] 
l ld  l ld  l ld  l ld  

-}- { G 1 3 6 B r ( 2 G 2 4 6 )  + G z 4 6 B r ( 2 G 1 3 6 ) }  

11 
x exp[i(A2a46 + Aid36 -31- A l l  q- A I 3 ) ]  

l ld  l ld  l ld  l ld  + {G 147 Br(2G237) + G237 Br(2G 147)} 

x exp[i(Ad37 -I- Ada7 .qt_ A 11 14 .ql_ A I ~ ) ] .  

The above two cases are not readily applicable to single 
isomorphous replacement data without anomalous-scat- 
tering (SIRNAS) data or including anomalous-scattering 
(SIRAS) data because then neither cross-term doublet 
signs nor main-term doublet signs are available in a 
straightforward way. 

4. Results and discussion 

In order to assess the predictive quality of (32), (37) and 
(44), extensive tests have been performed with calculated 
structural data from two small proteins from the Protein 
Data Bank (Bemstein et al., 1977; Abola, Bemstein, 
Bryant, Koetzle & Weng, 1987). The data sets used in 
the tests involve both native and heavy-atom-derivative 
data of APP [avian pancreatic polypeptide (Blundell, 
Pitts, Tickle, Wood & Wu, 1981); in the PDB release of 
1991 known as 1PPT] and C550 [cytochrome c from 
Paracoccous denitrificans (Timkovich & Dickerson, 
1976); in the PDB release of 1991 known as 155C]. 

For each structure, four different types of two 
isomorphous data sets have been constructed: 

O) SAS case. The isomorphous data sets are the 
Friedel-related-index sets {H(S1) } and {-H(S1) } both of 
the heavy-atom derivative (denoted as S 1) and using 
Cu Kot radiation. 

(ii) 2DW case. The isomorphous data sets used are: 
{H(21) } and {H(),2) } with 21 = Cr Kct and 2 2 = Cu Kot 
radiation, both selected for the heavy-atom derivative S1. 

(iii) SIRAS case. The isomorphous data set cases are 
defined as {H(S1)} and {H(S2)} with S 1 the heavy-atom 
(Hg) derivative and S 2 the native protein. Anomalous- 
dispersion corrections have been applied for all atoms. 

Table 1. Abbreviations and procedures employed in 
Tables 2-6  

SD4 Quartet estimation via (32) 
SD7 Quartet estimation via (37) 
SD7* Quartet estimation via (44) 
ALG Doublets estimated via the algebraic technique [Kyfiakidis et al., 1993b, 

equation (15b)] 
PAT Doublets estimated via the Patterson-improved algebraic technique 

[Kyriakidis et al., 1993b, §3.3] 
TRUE Calculated doublets used 
DR Diffraction ratio (Kyriakidis et al., 1993a) 
W Reliability factor of the estimates 
PQ Positive quartets only 
NQ Negative quartets only 
NQR Cunulative number of quartets involved in the statistics 
AER Mean absolute error in invariant phase sum estimates [in mc, see 

equation (45)] 
ERR Mean error in invariant phase sum estimates [in mc, see equation (45)] 
NS Number of wrong doublet signs 

(iv) SIRNAS case. The isomorphous data sets are 
defined as {H(S1)} and {H(S2) } with S 1 the heavy-atom 
derivative and $2 the native protein. No anomalous- 
dispersion corrections have been applied. 

In Kyriakidis et al. (1993b), it was shown that 
algebraically based estimates of doublet phase sums 
can be useful to get correct estimates of triplet phase 
sums present among isomorphous data sets; in particular, 
if the estimation of the doublet phase sums are based on 
vector information from a special difference Patterson 
synthesis. For the benefit of the current paper, the two 
algebraic approaches in Kyriakidis et al. (1993b) have 
been tested: (a) the algebraic doublet estimation (ALG) 
and (b) the algebraic estimation improved by difference- 
Patterson vectors (PAT). For SAS and 2DW data, the 
ALG doublet estimation depends only on the imaginary 
dispersion correction of the anomalous scatterers. For 
reference, and to establish the theoretical limits of (32), 
(37) and (44), the actual calculated doublet values 
(TRUE) have also been used. 

In the statistics, only quartets of type a, llll have been ~" 1234 
included. In each cumulative statistics, four quantities are 
listed: the reliability underlimit W, the cumulative 
number of quartets (NQR) with a reliability factor above 
this underlimit, the absolute mean difference AER in mc 
(1000 mc = 2rr rad), 

AER = (ll~4ltrue- 1~41estl ), 

and the mean difference in mc, (45) 

ERR = ( [ ~ t ~ e -  q"4es~[). 

4.1. Results for APP 

Table 1 lists abbreviations used in Tables 2-6. 
The native protein APP crystallizes in space group C2. 

It has 302 atoms in the asymmetric unit of which only 
Zn 2+ contributes to the anomalous scattering. For this 
small protein and its heavy-atom (Hg) derivative, data up 
to 2.27 A resolution (1454 reflections for each set) have 
been calculated using atomic coordinates from the PDB. 
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Table 2. APP: IEll and doublet phase-sum estimate 
statistics 

PAT ALG 

Nos. lEVI range AER ERR NS AER ERR NS 
1-250 1.33 ~ IEI ~ 3.01 1.5 1.8 9 5.5 5.7 7 

251-500 1.04 < IEI < 1.33 1.9 2.5 15 7.5 8.0 14 
501-750 0.82 < IEI < 1.04 2.6 4.5 28 10.3 12.0 28 
751-1000 0.60 < IEI < 0.82 3.8 7.1 34 15.2 18.8 36 

1001-1250 0.37 < IEI < 0.60 5.0 10.8 50 22.3  28.0 50 
1251-1454 0.02 < IEI < 0.37 18.7 80.9 71 60.4 116.7 72 

4.1.1. SAS case. In the SAS case, quartet phase-sum 
relations have been generated for the heavy-atom (Hg) 
derivative. When generating the quartet phase-sum 
relations, six different sets of main-term reflections were 
considered (see Table 2) in order to investigate any 
dependence of the estimates on [E l } and [E2[. For each 
set, 25 000 positive and 25 000 negative quartets were 
generated. Only quartets with at least two observed 
cross-term structure factors present in the data set were 
accepted. The classification of quartets as being positive 
or negative should be done in principle according to lEd[ 
but because of its dependence on (cos(t/A)) this is not 
convenient. Moreover, in the SAS and 2DW cases, the 
majority of the doublets are quite small so the decrease in 
[Eel is determined mainly by the decrease of both /Ell 
(and IE21). Therefore, the classification of quartets as 
being positive or negative was carried out with the IE11's, 
using criteria holding for normal diffraction data 
(Peschar, 1987). 

An excerpt of the quartet phase-sum statistics listed in 
Table 3 for the main term classes 1-250 and 751-1000 
show that, in spite of the small diffraction ratio (0.11), 
reliable estimates of quartet phase sums can be obtained 
when W is larger than 0.2 (0.3 in the case of negative 
quartets). When going from the set 1-250 to 751-1000, 
the general reliability of the quartet estimates decreases 
somewhat, even if correct doublets are used. This 
deterioration becomes worse if the PAT estimation is 
used, while the ALG estimation is clearly insufficient for 
the (501-750 and) 751-1000 set. This general deteriora- 
tion is the result of increasingly incorrect doublet 
estimates, as demonstrated by the PAT and ALG doublet 
errors in Table 2. Indeed, for the 1251-1454 main-term 
set, it is virtually impossible to get correct quartet 
estimates by means of PAT and/or ALG doublet 
estimates while the use of correct doublets still leads to 
acceptable results. 

A remarkable result is that the overall estimation error 
for the quartets turns out to be the same for (32) and (37) 
while those of (42) are approximately the same, and only 
occasionally slightly worse, than those of (37). This may 
seem to be an unexpected result that contradicts the usual 
considerations on the estimation of quartets using cross 
terms. 

However, the current case differs at several points 
from normal diffraction data. Most important is the role 
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of the doublets, because of which (32) leads to unique 
estimates on the interval (-Jr ,  Jr). For normal diffraction 
data, doublets do not occur and the only possible 
estimates for the quartet phase sum are 0 or 7r, dependent 
on the cross-term magnitudes. For isomorphous data sets, 
however, the doublets play the role of the cross terms. It 
is well known that in order to estimate phase-sum 
invariants of a certain order, e.g. a quartet of order N -1, 
cross-term-magnitude information is required. In a 
generalization and practical application of this principle, 
it has been shown that the estimation of a higher-order 
phase-sum invariant (quartet or quintet) can be improved 
by considering only the estimates of cross-term phases 
on the basis of the lowest-order invariant available. For 
normal diffraction data, these are the triplet phase sums 
(Peschar, 1987). As it turns out, this same principle 
seems to apply to the difference structure factor. The 
lowest-order invariants available now are the doublet 
phase sums and the reliability weights of their estimates 
are much larger than those of the triplets. As a result, 
expressing the main-term phases of the second data set 
q~i(2) in those of the first q~/(1) via the doublets [see (29)] 
will have a much larger influence than including cross- 
term information, which enters only via triplets for which 
the reliability factor is much smaller. 

A second essential difference with the normal diffrac- 
tion case should also be pointed out. In (37), it is 
explicitly assumed that the complete difference structure 
factor is available. The availability of the phase part of 
the difference structure factor depends on whether the 
doublet sign is (assumed to be) known or not. In the SAS 
and 2DW cases, the majority of the doublets have a 
positive sign, provided the data sets are chosen in an 
appropriate way: in the SAS case, {H} should be first and 
{-H} second while in the 2DW case the wavelength 
resulting in the largest anomalous effects should be 
selected first. For the benefit of this paper, we restricted 
the tests to two extreme cases: either complete estimates 
of the cross-term difference structure factors are assumed 
to be available, as in (37), or only an estimate of their 
magnitudes, which leads to (44). 

From Table 3, it is evident that the PAT-estimated 
doublets lead to better results than those with ALG- 
estimated doublets. In view of Table 2, this difference 
seems to be mostly due to a better estimation of the 
doublet magnitude in the PAT case because the number 
of incorrect doublet signs is almost the same in the ALG 
and PAT cases. The sudden breakdown of the reliability 
of the SD4(PAT) and SD7(PAT) estimates in the case 
1251-1454 (compared with 1001-1250) can be attri- 
buted to the same effect. 

4.1.2. 2DW case. In Table 4, cumulative statistics of 
quartet phase-sum estimates are listed for a 2DW case 
(21 -- CrKot, 22 = Cu Kot) for the Hg derivative of APP. 
The diffraction ratio is only 0.047 but still acceptable 
results can be obtained. This ratio corresponds with 
doublet values of about 4-5 mc. Additional tests done in 
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T a b l e  3. Cumulative statistics of the quartet phase-sum estimates of the heavy-atom (Hg) derivative of the protein 
APP in the SAS case 

1-250 (PQ) 1-250 (NQ) 751-1000 (PQ) 751-1000 (NQ) 

W NQR AER ERR NQR AER ERR NQR AER ERR NQR AER ERR 
SD4 
TRUE 

SD7 
TRUE 

SD4 
PAT 

SD7 
PAT 

SD4 
ALG 

SD7 
ALG 

SD7* 
PAT 

SD7* 
ALG 

0.6 7586 13 13 4514 17 17 462 10 11 491 13 13 
0.3 12084 15 16 10389 25 30 2392 12 12 1820 15 15 
0.2 13783 21 27 13503 36 71 4147 20 28 3765 36 56 
0.1 18813 38 59 18618 75 126 7806 58 ! 100 9449 104 188 
0.0 25000 62 98 25000 99 162 25000 122 ~ 189 25000 136 226 

0.6 10849 14 14 8174 17 18 465 11 11 818 14 14 
0.3 13287 16 17 11968 27 33 3670 13 14 3052 16 17 
0.2 16125 22 30 15332 51 80 5395 25 35 5162 45 73 
0.1 20333 43 66 20197 81 135 8889 62 106 10882 I05 188 
0.0 25000 61 98 25000 98 162 25000 122 189 25000 136 226 

0.6 5536 26 28 3135 35 40 674 30 40 324 29 35 
0.3 11428 32 35 9047 42 49 2852 67 92 2131 72 99 
0.2 12752 36 43 11818 58 77 4837 78 111 4448 94 138 
0.1 17494 51 69 16500 82 124 8850 106 162 10942 133 208 
0.0 25000 78 114 25000 112 173 25000 143 214 25000 152 234 

0.9 6507 27 29 3657 38 44 666 34 44 335 37 45 
0.6 9848 30 33 6994 40 47 1627 55 74 1056 57 76 
0.3 12511 33 38 10891 44 51 4234 72 100 3443 78 109 
0.2 14528 38 47 13239 61 84 6135 84 120 6196 104 154 
0.1 19194 56 78 18443 89 137 10153 111 167 12670 135 210 
0.0 25000 78 114 25000 111 173 25000 143 214 25000 152 232 

0.4 27 88 95 31 85 92 . . . . . .  
0.3 1499 82 116 1802 94 134 530 126 189 590 165 230 
0.2 24682 94 129 24483 123 183 24799 154 223 24591 161 237 
0.0 25000 94 129 25000 123 182 25000 154 223 25000 160 237 

0.5 331 72 88 466 84 100 39 127 164 42 171 229 
0.4 3847 85 118 4480 99 147 1731 145 212 2270 157 225 
0.3 24581 94 128 24430 123 183 24726 154 223 24493 161 237 
0.0 25000 94 128 25000 122 182 25000 154 223 25000 160 237 

0.9 5115 28 31 4039 41 47 667 49 67 445 51 69 
0.6 9156 30 33 7202 42 49 1678 55 74 1257 61 85 
0.3 12499 34 39 10855 44 52 4042 71 98 3561 80 112 
0.2 14351 40 49 13581 63 88 6197 87 127 6674 111 167 
0.1 18982 56 80 18703 91 140 10336 113 172 13169 137 214 
0.0 25000 78 114 25000 111 173 25000 143 214 25000 152 232 

0.9 196 60 70 228 69 80 49 170 221 38 177 236 
0.6 2189 71 88 2948 81 105 1569 160 217 1656 153 215 
0.3 15559 86 116 16379 108 155 13686 152 219 13579 157 231 
0.2 24891 94 128 24890 123 182 24920 154 223 24869 160 237 
0.0 25000 94 128 25000 123 182 25000 154 223 25000 160 237 

the  S A S  and  2 D W  cases  for  b o t h  the  na t ive  A P P ,  in 

w h i c h  Z n  is the  on ly  a n o m a l o u s  scat terer ,  and  the  h e a v y -  
a t o m  de r iva t i ve  s h o w  that  i f  the  d i f f r ac t ion  rat io  b e c o m e s  
sma l l e r  t han  0 .04  the  qua l i ty  o f  the  es t ima tes  b reaks  

d o w n  p rog re s s ive ly .  A t  a d i f f rac t ion  ratio o f  0 .01,  e v e n  
the  use  o f  co r rec t  doub le t s  does  no t  y i e ld  any  use fu l  
resul t s  any  more .  

4.1.3.  SIRAS and SIRNAS case. In  bo th  the  S I R A S  

and  S I R N A S  cases ,  the  d i f f rac t ion  rat io is la rge  (0 .60 and  
0 .64,  respec t ive ly) .  A l t h o u g h  the  d o u b l e t  m a g n i t u d e s  can  
be  e s t i m a t e d  in a re l iable  way ,  a l ack  o f  k n o w l e d g e  o f  the  

d o u b l e t  s igns  p r e v e n t s  a co r rec t  e s t i m a t i o n  o f  the  qua r t e t  

p h a s e  sums .  T h e  E R R  resul t s  in the  A L G  case  (see  
Tab le  5) sugges t  the  o p p o s i t e  bu t  a c lo se  i n s p e c t i o n  o f  the  
i nd iv idua l  e s t ima te s  s h o w s  that  a l m o s t  all quar te t s  w i th  
la rge  W are e s t i m a t e d  to be  e i ther  0 o r  Jr. In  spi te  
o f  this  s ign  a m b i g u i t y ,  the  l ow  A E R  da ta  for  the  P A T  and  
A L G  cases  s h o w s  that  (32),  (37) and  (42) are qu i t e  
e f fec t ive  in p r ed i c t i ng  the  quar te t  p h a s e - s u m  m a g n i t u d e s .  

T h e  resul ts  in the  S I R N A S  case  ( D R = 0 . 6 4 )  are 
qu i te  s imi la r  to t hose  in the  S I R A S  case  and  are 

the re fo re  no t  l is ted.  
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Table 4. Cumulative statistics of the estimates for the positive quartet phase sums for the heavy-atom (Hg) derivative 
of the protein APP in the 2DW case (21 = Cr Ka, 22 = Cu Kot) 

DR = 0.047; negative doublets: 5; the first 25 000 positive quartets generated among the strongest 250 lEVI's have been included in the statistics. 
*: IRdrossl assumed to be known. 

1-250 1-250 1-250 1-250 
SD4 (TRUE) SD7 (TRUE) SD4 (PAT) SD7 (PAT) 

W NQR AER ERR NQR AER ERR NQR AER ERR NQR AER ERR 

0.9 2632 28 30 7932 31 34 - - - 5333 45 50 
0.6 7569 31 34 11445 35 38 4142 42 45 9152 49 54 
0.3 14793 50 59 17255 56 69 11005 52 58 12377 54 61 
0.2 18304 63 83 20048 68 91 12750 58 67 14806 65 78 
0.1 21859 76 103 22778 78 108 18586 85 109 20449 91 119 
0.0 25000 87 120 25000 87 120 25000 106 142 25000 104 141 

SD4 (ALG) SD7 (ALG) SD7* (PAT) SD7* (ALG) 

W NQR AER ERR NQR AER ERR NQR AER ERR NQR AER ERR 

0.9 . . . . . .  4474 47 52 124 74 86 
0.6 . . . . . .  8398 49 54 1866 80 99 
0.5 - - - 416 97 118 9781 50 57 4026 86 110 
0.4 135 109 130 4024 96 128 11100 52 59 8138 92 119 
0.3 2236 100 127 21437 104 141 12495 56 64 15375 99 131 
0.2 22398 103 140 24912 104 141 20379 92 119 24503 104 141 
0.0 25000 105 142 25000 104 141 25000 105 141 25000 105 141 

Table 5. Cumulative statistics of the quartet phase-sum estimates of the protein APP in the SIRAS case 

DR = 0.60. Negative doublets: 105. Positive quartets only generated among main-term reflections nos. 1-250. 

1-250 1-250 1-250 1-250 
SD4 (TRUE) SD7 (TRUE) SD4 (PAT) SD7 (PAT) 

W NQR AER ERR NQR AER ERR NQR AER ERR NQR AER ERR 

1.4 - - - 966 2 2 - - - 1285 59 124 
1.2 - - - 2769 1 1 - - - 3244 66 127 
1.0 - - - 5202 1 1 - - - 5632 70 132 
0.8 897 2 2 7625 1 1 1224 59 125 8010 72 138 
0.6 5457 1 1 9922 1 1 6026 70 136 10150 74 141 
0.3 11451 1 1 12528 1 1 11635 76 142 12629 77 144 
0.2 12837 6 10 14587 7 12 12948 80 147 14715 82 149 
0.1 17686 21 38 19131 25 46 17734 92 161 19349 96 166 
0.0 25000 47 88 25000 47 88 25000 108 182 25000 108 182 

1-250 1-250 1-250 1-250 
SD7* (PAT) SD4 (ALG) SD7 (ALG) SD7* (ALG) 

W NQR AER ERR NQR AER ERR NQR AER ERR NQR AER ERR 

2.3 1006 59 109 . . . . . .  148 31 35 
1.9 2205 62 118 . . . . . .  491 42 57 
1.4 5777 69 131 . . . . . .  2028 53 89 
1.2 6487 70 133 - - - 131 24 28 3484 60 105 
1.0 7867 72 135 - - - 566 37 47 6030 79 134 
0.8 9441 74 139 40 16 18 2277 46 83 10099 87 145 
0.6 11059 75 142 832 36 53 8512 79 135 15377 99 162 
0.5 11717 76 142 2657 45 90 15336 100 163 18268 105 170 
0.4 12472 77 144 8150 78 136 22552 114 182 21481 111 178 
0.0 25000 108 182 25000 118 188 25000 118 188 25000 118 188 

4.2. Results for C550 

The protein C550 has molecular weight M r = 14 500 
(1017 atoms in the asymmetric unit) and crystallizes in 
space group P212121, structure factors up to 2.5 A were 
calculated. The native protein contains 4 Fe and 24 S 
atoms which scatter anomalously at the wavelengths 
used. In the original heavy-atom derivative, the anom- 

alously scattering group (PtC14) 2- was present but, for 
the sake of simplicity, in the current tests this group has 
been replaced by a Po atom that has the same effective Z 
value (84) at s in(0)/2 = 0. 

The isomorphous data sets of C550 in the SAS and 
SIRAS cases are characterized by a large number of 
small doublet values. This is partly due to the large 
amount of phase-restricted reflections in the space group 
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Table 6. Cumulative statistics of the doublet and quartet phase-sum estimates of the protein cytochrome c in the SAS 
(heavy-atom derivative) and SIRAS (heavy-atom derivative and native) cases 

CuKot radiation. Resolution: 2.5 .~. Positive quartets only generated among main-term reflections nos. 1-500 and 501-1000. 

Doublets 

Quartets 

Nos. [Eli range AER ERR NS 

(I) SAS 1-500 5.66 _< IEI _< 1.4 3.2 4.0 45 
(II) sms 501-1000 1.4 < IE[ < 1.13 4.0 5.5 75 
(III) SIRAS 1-500 5.66 _< IEI _< 1.4 3.4 21.5 207 
(IV) SIRAS 501-1000 1.4 < IEI < 1.13 3.6 32.0 235 

(I) (II) (III) (IV) 
SD4 (PAT) SD4 (PAT) SD4 (PAT) SD7 (PAT) 

W NQR AER ERR NQR AER ERR NQR AER ERR NQR AER ERR 

6.0 . . . . . .  266 103 151 23 85 172 
5.0 93 80 110 9 47 47 502 101 154 86 94 168 
4.0 302 77 104 25 58 70 1000 109 169 206 96 167 
3.0 845 78 104 162 71 80 2003 113 176 606 111 193 
2.0 2550 97 130 847 94 120 4347 123 192 1944 133 218 
1.5 4679 112 154 2030 115 157 6793 132 206 3626 142 228 
1.0 9256 133 188 5362 137 194 10878 141 218 7151 149 232 
0.5 18220 147 213 14298 154 225 17345 148 228 13857 156 238 
0.0 25000 152 222 25000 158 233 25000 153 235 25000 160 242 

P21212 a. In Table 6, some examples are listed of results 
obtained in the SAS and SIRAS cases with CuKc~. 
Although the diffraction ratio is quite small in the SAS 
case (0.09), the quartet phase-sum estimates are still 
acceptable provided the Patterson-improved (PAT) 
doublet estimates are used. Attempts with the ALG- 
estimated doublets were not successful. In the SIRAS 
case with a diffraction ratio of 0.36, the results are 
somewhat less successful. This can be attributed mainly 
to the fact that the doublet signs cannot be predicted in 
the current probabilistic approach. An additional problem 
arises from the large amount of phase-restricted reflec- 
tions. Although the difference-structure-factor approach 
can be set up in a similar way as for general reflections 
(see Appendix I), an analysis of (IFal 2} leads to the 
conclusion that, in addition to the usual interatomic 
vector terms upon which the PAT-doublet estimation is 
based, other terms are also present that in general are not 
available in a straightforward way. In spite of the sign 
ambiguity in the SIRAS case, it is hopeful that the 
magnitude of the estimated quartets correspond quite 
well with the actual quartet phase-sum magnitudes. In the 
501-1000 main-term set, less quartets are found at a 
higher reliability level but those that do occur are 
comparable in reliability with those from the 1-500 set. 

In conclusion, by using the technique of difference 
structure factors, it is possible to obtain reliable estimates 
of quartet phase sums present among isomorphous data 
sets. The estimates are unique on the interval -zr to Jr in 
the case of SAS or 2DW data provided the diffraction 
ratio is large enough (at least 0.04). In contrast to the 
normal diffraction case, involving only a single data set 
and no anomalous scattering, for the estimation of quartet 
phase sums among isomorphous structure factors 
knowledge of cross-term magnitudes is not essential 

because their role is fulfilled by the doublet phase-sum 
estimates. In the SIRAS and SIRNAS cases, doublet 
magnitudes are estimated correctly but the doublet signs 
cannot be estimated from the current probabilistic 
approach. Nevertheless, the SIRAS data suggest that 
quartet phase sums can be sorted out that lie close to 0 or 
n, provided the doublet estimates are supplemented by 
Patterson vectors. 

The authors gladly acknowledge that the comments of 
one of the referees helped to improve the quality of this 
paper. 

APPENDIX A 
The difference structure factor for phase-restricted 

isomorphous structure factors 

Although the derivations of the expressions in this paper 
do hold formally only if the normal structure factors are 
not phase restricted, a formulation of the difference- 
structure-factor approach for these types of reflection can 
be set up in a similar way. [A discussion on the 
estimation of phase-restricted doublets via the usual 
probabilistic technique can be found in Giacovazzo 
(1987).] 

The expression for a structure factor with a phase 
restriction 0/zr is 

N/2 
F n = 2 ~]~fjn cos[2n'H, rj] (46) 

j=l 

so F_n = Fn. Since Fh ~ Ft.1, a difference structure 
factor can be defined as 

N/2 
F~ = F n - F~ = 2 ~--~.ffn cos[2~rIa, rj] (47) 

j=l 
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with fj~ = f : n - f j h .  Because of anomalous scattering, 
the phase ~0 n will deviate slightly from its phase 
restriction ~0r: ~0 n ~ q9 r -t- ~H" 

From (47), lEVI = 21Fn 1211 - cos(2~n)] so the same 
functional form is obtained as for general reflections [see 
(13) in Kyriakidis et al., 1993b]: 

(cos(26/_/)) = (21FHI 2 - (IF~12))/2lFnl 2. (48) 

Expressing IFH a 12 in the atomic contributions leads to 
N/2 N/2 

IFdl2 = 2 ~ ~--],fjd(fjd)* 
j l=l  j2=l 

× {cos[2z~n. (r~l - rj2)] 

+ cos[2zrS • (rjl + rj2)] }. (49) 

The first cosine term in (49) contributes to the doublet 
estimation but the second, involving rjl + r~2, is not 
available and must therefore be neglected. Structure 
factors with a different phase restriction can be dealt with 
in a similar way. For example, for reflections restricted 
on + n / 2 ,  the difference structure factor can be defined as 

F d = FH -- F* n (50) 

with 
N/2 

F H = 2i ~--~-fjH s i n [ 2 J r H  - r j ] .  
j=l 
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